COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Comparative evaluation of isoform-level gene expression estimation algorithms for RNA-seq and exon-array platforms.

Given that the majority of multi-exon genes generate diverse functional products, it is important to evaluate expression at the isoform level. Previous studies have demonstrated strong gene-level correlations between RNA sequencing (RNA-seq) and microarray platforms, but have not studied their concordance at the isoform level. We performed transcript abundance estimation on raw RNA-seq and exon-array expression profiles available for common glioblastoma multiforme samples from The Cancer Genome Atlas using different analysis pipelines, and compared both the isoform- and gene-level expression estimates between programs and platforms. The results showed better concordance between RNA-seq/exon-array and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) platforms for fold change estimates than for raw abundance estimates, suggesting that fold change normalization against a control is an important step for integrating expression data across platforms. Based on RT-qPCR validations, eXpress and Multi-Mapping Bayesian Gene eXpression (MMBGX) programs achieved the best performance for RNA-seq and exon-array platforms, respectively, for deriving the isoform-level fold change values. While eXpress achieved the highest correlation with the RT-qPCR and exon-array (MMBGX) results overall, RSEM was more highly correlated with MMBGX for the subset of transcripts that are highly variable across the samples. eXpress appears to be most successful in discriminating lowly expressed transcripts, but IsoformEx and RSEM correlate more strongly with MMBGX for highly expressed transcripts. The results also reinforce how potentially important isoform-level expression changes can be masked by gene-level estimates, and demonstrate that exon arrays yield comparable results to RNA-seq for evaluating isoform-level expression changes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app