Add like
Add dislike
Add to saved papers

Glucagon-Like Peptide 1 Receptor Activation Attenuates Platelet Aggregation and Thrombosis.

Diabetes 2016 June
Short-term studies in subjects with diabetes receiving glucagon-like peptide 1 (GLP-1)-targeted therapies have suggested a reduced number of cardiovascular events. The mechanisms underlying this unexpectedly rapid effect are not known. We cloned full-length GLP-1 receptor (GLP-1R) mRNA from a human megakaryocyte cell line (MEG-01), and found expression levels of GLP-1Rs in MEG-01 cells to be higher than those in the human lung but lower than in the human pancreas. Incubation with GLP-1 and the GLP-1R agonist exenatide elicited a cAMP response in MEG-01 cells, and exenatide significantly inhibited thrombin-, ADP-, and collagen-induced platelet aggregation. Incubation with exenatide also inhibited thrombus formation under flow conditions in ex vivo perfusion chambers using human and mouse whole blood. In a mouse cremaster artery laser injury model, a single intravenous injection of exenatide inhibited thrombus formation in normoglycemic and hyperglycemic mice in vivo. Thrombus formation was greater in mice transplanted with bone marrow lacking a functional GLP-1R (Glp1r(-/-)), compared with those receiving wild-type bone marrow. Although antithrombotic effects of exenatide were partly lost in mice transplanted with bone marrow from Glp1r(-/-) mice, they were undetectable in mice with a genetic deficiency of endothelial nitric oxide synthase. The inhibition of platelet function and the prevention of thrombus formation by GLP-1R agonists represent potential mechanisms for reduced atherothrombotic events.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app