Journal Article
Review
Add like
Add dislike
Add to saved papers

[Store-operated Calcium Entry into B Cells Regulates Autoimmune Inflammation].

Alterations in the cytosolic concentration of calcium ions (Ca(2+)) are important signals for various physiological events. The engagement of B cell receptors (BCR) results in the transient release of Ca(2+) into cytosol from endoplasmic reticulum (ER) stores. In turn, this decrease in ER luminal Ca(2+) concentration triggers the opening of Ca(2+) channels in the plasma membrane, inducing a sustained influx of extracellular Ca(2+) into cells. These processes are referred to as store-operated Ca(2+) entry (SOCE), which is an essential pathway for continuous Ca(2+) signaling. While the ER calcium sensor stromal interaction molecule (STIM) 1 and STIM2 are crucial components for SOCE activation, their physiological roles in B cells are unknown. Here we uncover the physiological function of SOCE in B cells by analyzing mice with B cell-specific deletions of STIM1 and STIM2. Our findings indicate that STIM1 and STIM2 are critical for BCR-induced SOCE, as well as the activation of nuclear factors of activated T cells (NFAT), and the subsequent production of interleukin-10 (IL-10). Although STIM proteins are not essential for B cell development and antibody responses, these molecules are required to suppress experimental autoimmune encephalomyelitis (EAE) via an IL-10-dependent mechanism. Accumulating evidence underscores the importance of IL-10-producing B cells in autoimmunity, although the identity of IL-10-producing B cells with a regulatory function in vivo remains unclear. We addressed this issue and identified plasmablasts as IL-10-producing B cells that can suppress EAE inflammation. Our data established STIM-dependent SOCE as a key signal for the regulatory plasmablasts required to limit autoimmunity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app