JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Modeling glucose and free fatty acid kinetics in glucose and meal tolerance test.

BACKGROUND: Quantitative evaluation of insulin regulation on plasma glucose and free fatty acid (FFA) in response to external glucose challenge is clinically important to assess the development of insulin resistance (World J Diabetes 1:36-47, 2010). Mathematical minimal models (MMs) based on insulin modified frequently-sampled intravenous glucose tolerance tests (IM-FSIGT) are widely applied to ascertain an insulin sensitivity index (IEEE Rev Biomed Eng 2:54-96, 2009). Furthermore, it is important to investigate insulin regulation on glucose and FFA in postprandial state as a normal physiological condition. A simple way to calculate the appearance rate (Ra) of glucose and FFA would be especially helpful to evaluate glucose and FFA kinetics for clinical applications.

METHODS: A new MM is developed to simulate the insulin modulation of plasma glucose and FFA, combining IM-FSIGT with a mixed meal tolerance test (MT). A novel simple functional form for the appearance rate (Ra) of glucose or FFA in the MT is developed. Model results are compared with two other models for data obtained from 28 non-diabetic women (13 African American, 15 white).

RESULTS: The new functional form for Ra of glucose is an acceptable empirical approximation to the experimental Ra for a subset of individuals. When both glucose and FFA are included in FSIGT and MT, the new model is preferred using the Bayes Information Criterion (BIC).

CONCLUSIONS: Model simulations show that the new MM allows consistent application to both IM-FSIGT and MT data, balancing model complexity and data fitting. While the appearance of glucose in the circulation has an important effect on FFA kinetics in MT, the rate of appearance of FFA can be neglected for the time-period modeled.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app