Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

[Effects of single heat stress treatment on spermatogenic cells in mice].

OBJECTIVE: To investigate the effects of single heat stress treatment on spermatogenic cells in mice.

METHODS: We randomly divided 36 C57 male mice into a control and a heat stress treatment group and submerged the lower part of the torso in water at 25 °C and 43 °C, respectively, both for 15 minutes. At 1, 7, and 14 days after treatment, we obtained the testicular organ indexes, observed the changes in testicular morphology by HE staining, and determined the location and expression levels of the promyelocytic leukemia zinc finger (PLZF) and synaptonemal comlex protein-3 (SCP-3) in the testis tissue by immunohistochemistry and Western blot.

RESULTS: The testicular organ index was significantly lower in the heat stress treatment than in the control group (P < 0.05). Compared with the controls, the heat shock-treated mice showed loosely arranged spermatogenic cells scattered in the seminiferous tubules at 1 day after heat stress treatment, atrophied, loosely arranged and obviously reduced number of spermatogenic cells at 7 days, and relatively closely arranged seminiferous tubules and increased number and layers of spermatogenic cells at 14 days. The number of SCP-3 labelled spermatocytes obviously decreased in the heat stress-treated animals at 1 and 7 days and began to increase at 14 days. The PLZF protein expression was significantly reduced in the heat stress treatment group at 1 day as compared with that in the control (0.19 ± 0.12 vs 0.64 ± 0.03, P < 0.01), but elevated to 0.77 ± 0.02 at 7 and 14 days, even remarkably higher than in the control animals (P < 0.01).

CONCLUSION: Heat stress treatment can induce short-term dyszoospermia in mice, which can be recovered with the prolonged time after treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app