Add like
Add dislike
Add to saved papers

Daily expression of genes coding for neurotransmitters in central and peripheral tissues of redheaded bunting: Implication for circadian regulation of physiology in songbirds.

In birds, circadian control of tissue level communication is not well understood. The present study investigated this, by monitoring daily oscillation of genes coding for peptides (neuropeptide Y, NPY; vasoactive intestinal peptide, VIP; somatostatis, SST) and intermediary enzymes of amine and amino acid neurotransmitters (dopamine [tyrosine hydroxylase, TH]; glutamate [glutaminase, GLS; glutamate oxaloacetate transaminase 2, GOT2]; gamma amino butyric actid, GABA [glutamic acid decarboxylase 65, GAD65]) biosynthetic pathway, along with c-FOS as an activation marker, in different tissues of migratory redheaded buntings, Emberiza bruniceps. We cloned a partial sequence of these genes, and measured their mRNA expression in the 'central' clock (retina, hypothalamus) and peripheral (heart, stomach, gut, liver) tissues, collected at six times (ZT 2, 6, 11, 13, 18 and 23; ZT 0 = lights on) from birds (n = 4/ ZT) in the 12 h:12 h light-dark cycle. There were daily mRNA oscillations of all genes, although with a tissue-specific expression pattern as well as with the differential phase relationships in genes within and between tissues. These results support a conserved tissue level circadian regulation of genes coding for peptide, amine and amino acid neurotransmitters, and substantiate the expression and plausible role of neurotransmitters in the peripheral tissues. We suggest a tissue-specific contribution of neurotransmitters in the circadian regulation of physiology and behaviour in a seasonal migratory species, the redheaded bunting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app