Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Population genetic analysis of a medicinally significant Australian rainforest tree, Fontainea picrosperma C.T. White (Euphorbiaceae): biogeographic patterns and implications for species domestication and plantation establishment.

BACKGROUND: Fontainea picrosperma, a subcanopy tree endemic to the rainforests of northeastern Australia, is of medicinal significance following the discovery of the novel anti-cancer natural product, EBC-46. Laboratory synthesis of EBC-46 is unlikely to be commercially feasible and consequently production of the molecule is via isolation from F. picrosperma grown in plantations. Successful domestication and plantation production requires an intimate knowledge of a taxon's life-history attributes and genetic architecture, not only to ensure the maximum capture of genetic diversity from wild source populations, but also to minimise the risk of a detrimental loss in genetic diversity via founder effects during subsequent breeding programs designed to enhance commercially significant agronomic traits.

RESULTS: Here we report the use of eleven microsatellite loci (PIC = 0.429; P ID  = 1.72 × 10(-6)) to investigate the partitioning of genetic diversity within and among seven natural populations of F. picrosperma. Genetic variation among individuals and within populations was found to be relatively low (A = 2.831; H E  = 0.407), although there was marked differentiation among populations (PhiPT = 0.248). Bayesian, UPGMA and principal coordinates analyses detected three main genotypic clusters (K = 3), which were present at all seven populations. Despite low levels of historical gene flow (N m  = 1.382), inbreeding was negligible (F = -0.003); presumably due to the taxon's dioecious breeding system.

CONCLUSION: The data suggests that F. picrosperma was previously more continuously distributed, but that rainforest contraction and expansion in response to glacial-interglacial cycles, together with significant anthropogenic effects have resulted in significant fragmentation. This research provides important tools to support plantation establishment, selection and genetic improvement of this medicinally significant Australian rainforest species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app