Add like
Add dislike
Add to saved papers

Biocorrodible metals for coronary revascularization: Lessons from PROGRESS-AMS, BIOSOLVE-I, and BIOSOLVE-II.

The impetus for developing drug-eluting bioresorbable scaffolds (BRS) has been driven by the need for elastic and transient platforms instead of stiff and permanent metallic implants in diseased coronary anatomies. This endeavor would prevent acute recoil or occlusion, allow sealing of post-procedural dissections following acute barotrauma, provide inhibition of in-segment restenosis through efficient drug-elution and would further prepare the vessel to enter a reparative phase following scaffold resorption. Biocorrodible metallic platforms have been introduced as alternatives to bioresorbable polymeric scaffolds for the treatment of significant atherosclerosis and in view of the body of evidence derived from recent clinical trials we elaborate on the clinical safety and efficacy of these devices in interventional cardiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app