JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

p28-Mediated Activation of p53 in G2-M Phase of the Cell Cycle Enhances the Efficacy of DNA Damaging and Antimitotic Chemotherapy.

Cancer Research 2016 April 16
p28 is an anionic cell-penetrating peptide of 28 amino acids that activates wild-type and mutated p53, leading subsequently to selective inhibition of CDK2 and cyclin A expression and G2-M cell-cycle arrest. In this study, we investigated the cytotoxic effects of p28 treatment alone and in combination with DNA-damaging and antimitotic agents on human cancer cells. p28 enhanced the cytotoxic activity of lower concentrations (IC20-50) of DNA-damaging drugs (doxorubicin, dacarbazine, temozolamide) or antimitotic drugs (paclitaxel and docetaxel) in a variety of cancer cells expressing wild-type or mutated p53. Mechanistic investigations revealed that p28 induced a post-translational increase in the expression of wild-type or mutant p53 and p21, resulting in cell-cycle inhibition at the G2-M phase. The enhanced activity of these anticancer agents in combination with p28 was facilitated through the p53/p21/CDK2 pathway. Taken together, these results highlight a new approach to maximize the efficacy of chemotherapeutic agents while reducing dose-related toxicity. Cancer Res; 76(8); 2354-65. ©2016 AACR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app