Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Local Heterogeneous Electrical Restitution Properties of Rabbit Atria.

INTRODUCTION: This study aims to characterize the regional variability in rate-adaptation in the atria.

METHODS AND RESULTS: Action potential (AP) responses to pulses with uniform as well as pseudo-random non-uniform pacing intervals were recorded from rabbit sino-atrial node, right and left atrial pectinate as well as pulmonary vein antrum tissue preparations using conventional intracellular glass microelectrodes. Steady-state restitution curves were reconstructed for various AP waveform metrics. We observed significant variability between the four regions under basal pacing representing the rabbit resting heart rate as well as regional variability in rate-adaptation to increased pacing frequencies. Right-left atrial restitution differences were further confirmed using the non-uniform pacing protocol, with significant differences in AP amplitude, duration (APD) as well as maximum phase 0 depolarization rate restitution curves in response to an identical sequence of non-uniform pacing intervals. In addition, we report regional differences in alternans of AP waveform metrics, over a wide range of pacing frequencies and not simply prior to 1:1 entrainment being lost. We also observed an increase in APD90 along the conduction pathway from the left atrium to pulmonary vein junction.

CONCLUSIONS: Our results identified significant regional differences in electrical restitution in the rabbit atria and suggest their dependency on both baseline AP morphology and local intrinsic differences in rate-adaptation. We propose that the atrial heterogeneity in rate-adaptation could contribute to arrhythmogenesis and the greater susceptibility of pulmonary vein myocardial sleeves to ectopic foci and reentrant activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app