Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Anthraphane: An Anthracene-Based, Propeller-Shaped D(3h)-Symmetric Hydrocarbon Cyclophane and Its Layered Single Crystal Structures.

The novel hydrocarbon propeller-shaped D3h-symmetric cyclophane (3), "anthraphane", was prepared through a revisited and optimized gram-scale synthesis of the key building block anthracene-1,8-ditriflate 7. Anthraphane has a high tendency to crystallize and single crystals in size ranges of 100-200 μm are easily obtained from different solvents. The crystallization behavior of 3 was extensively studied to unravel packing motifs and determine whether the packing can be steered into a desired direction, so to allow topochemical photopolymerization. SC-XRD shows that anthraphane packs in layers irrespective of the solvent used for crystallization. However, within the layers, intermolecular arrangements and π-π interactions of the anthracene units vary strongly. Four interaction motifs for the anthracene moieties are observed and discussed in detail: two types of exclusively edge-to-face (etf), a mixture of edge-to-face and face-to-face (ftf), and no anthracene-anthracene interaction at all. To elucidate why an exclusive ftf stacking was not observed, electrostatic potential surface (EPS) calculations with the semiempirical PM3 method were performed. They show qualitatively that the anthracene faces bear a strong negative surface potential, which may be the cause for this cyclophane to avoid ftf interactions. This combined crystallographic and computational study provides valuable insights on how to create all-ftf packings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app