Add like
Add dislike
Add to saved papers

Facilitation of Co-Metabolic Transformation and Degradation of Monochlorophenols by Pseudomonas sp. CF600 and Changes in Its Fatty Acid Composition.

In this study, co-metabolic degradation of monochlorophenols (2-CP, 3-CP, and 4-CP) by the Pseudomonas sp. CF600 strain in the presence of phenol, sodium benzoate, and 4-hydroxybenzoic acid as an additional carbon source as well as the survival of bacteria were investigated. Moreover, the changes in cellular fatty acid profiles of bacteria depending on co-metabolic conditions were analyzed. It was found that bacteria were capable of degrading 4-CP completely in the presence of phenol, and in the presence of all substrates, they degraded 2-CP and 3-CP partially. The highest 2-CP and 3-CP removal was observed in the presence of sodium benzoate. Bacteria exhibited three various dioxygenases depending on the type of growth substrate. It was also demonstrated that bacteria exposed to aromatic growth substrates earlier degraded monochlorophenols more effectively than unexposed cells. The analysis of fatty acid profiles of bacteria indicated the essential changes in their composition, involving alterations in fatty acid saturation, hydroxylation, and cyclopropane ring formation. The most significant change in bacteria exposed to sodium benzoate and degrading monochlophenols was the appearance of branched fatty acids. The knowledge from this study indicates that Pseudomonas sp. CF600 could be a suitable candidate for the bioaugmentation of environments contaminated with phenolic compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app