Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

T2 and Apparent Diffusion Coefficient of MRI Reflect Maturation of Tissue-Engineered Auricular Cartilage Subcutaneously Transplanted in Rats.

In cartilage regenerative medicine, autologous chondrocyte implantation (ACI) has been applied clinically for partial defects of joint cartilage or nasal augmentation. To make treatment with ACI more effective and prevalent, modalities to evaluate the quality of transplanted constructs noninvasively are necessary. In this study, we compared the efficacy of several noninvasive modalities for evaluating the maturation of tissue-engineered auricular cartilage containing a biodegradable polymer scaffold. We first transplanted tissue-engineered cartilage consisting of human auricular chondrocytes, atelocollagen gel, and a poly-l-lactic acid (PLLA) porous scaffold subcutaneously into the back of athymic nude rats. Eight weeks after transplantation, the rats were examined by magnetic resonance imaging (MRI), X-ray, and ultrasound as noninvasive modalities. Then, the excised constructs were examined by histological and biochemical analysis including toluidine blue (TB) staining, glycosaminoglycans content, and enzyme-linked immunosorbent assay of type II collagen. Among the modalities examined, transverse relaxation time (T2) and apparent diffusion coefficient of MRI showed quite a high correlation with histological and biochemical results, suggesting that these can effectively detect the maturation of tissue-engineered auricular cartilage. Since these noninvasive modalities would realize time-course analysis of the maturation of tissue-engineered auricular cartilage, this study provides a substantial insight for improving the quality of tissue-engineered cartilage, leading to improvement of the quality and technique in cartilage regenerative medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app