Add like
Add dislike
Add to saved papers

Dose reduction in cone-beam CT scanning for intracranial stent deployment before coil embolization of intracranial wide-neck aneurysms.

PURPOSE: Flat panel detector (FD)-equipped angiography machines are increasingly used for neuro-angiographic imaging. During intracranial stent-assisted coil embolization procedures, it is very important to clearly and quickly visualize stent shape after deployment in the vessel. It is necessary to quickly visualize stents by cone-beam computed tomography (CBCT). The aim of this study was to compare CBCTs at 10 and 20 s, and to confirm that this method is useful for neuro-endovascular treatment procedures.

MATERIALS AND METHODS: We treated 30 patients with wide-necked intracranial aneurysms with a flexible, self-expanding neurovascular stent and subsequent aneurysm embolization with platinum micro-coils. We performed the CBCT after stent deployment. We compared the 10 s and 20 s CBCTs, using the full width one-half maximum (FWHM) visualization.

RESULTS: Accurate stent placement with subsequent coil occlusion of the aneurysms was feasible in all patients. Stent struts were clearly visualized on both 10 s and 20 s CBCTs. Importantly, 10 s CBCT can reduce the radiation dose by about 42%, compared with 20 s CBCT. Performing 10 s CBCT with a 14% dilution of the contrast medium may significantly improve image acquisition during stent-assisted coil embolization.

CONCLUSIONS: Reduced-dose, 10 s CBCT can visualize stents in clinical cases, while significantly reducing radiation exposure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app