JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Role of Excessive Autophagy Induced by Mechanical Overload in Vein Graft Neointima Formation: Prediction and Prevention.

Scientific Reports 2016 Februrary 27
Little is known regarding the interplays between the mechanical and molecular bases for vein graft restenosis. We elucidated the stenosis initiation using a high-frequency ultrasonic (HFU) echogenicity platform and estimated the endothelium yield stress from von-Mises stress computation to predict the damage locations in living rats over time. The venous-arterial transition induced the molecular cascades for autophagy and apoptosis in venous endothelial cells (ECs) to cause neointimal hyperplasia, which correlated with the high echogenicity in HFU images and the large mechanical stress that exceeded the yield strength. The ex vivo perfusion of arterial laminar shear stress to isolated veins further confirmed the correlation. EC damage can be rescued by inhibiting autophagy formation using 3-methyladenine (3-MA). Pretreatment of veins with 3-MA prior to grafting reduced the pathological increases of echogenicity and neointima formation in rats. Therefore, this platform provides non-invasive temporal spatial measurement and prediction of restenosis after venous-arterial transition as well as monitoring the progression of the treatments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app