Add like
Add dislike
Add to saved papers

Hydrodynamics Analysis and CFD Simulation of Portal Venous System by TIPS and LS.

In cirrhotic patients, portal hypertension is often associated with a hyperdynamic changes. Transjugular Intrahepatic Portosystemic Shunt (TIPS) and Laparoscopic splenectomy are both treatments for liver cirrhosis due to portal hypertension. While, the two different interventions have different effects on hemodynamics after operation and the possibilities of triggering PVT are different. How hemodynamics of portal vein system evolving with two different operations remain unknown. Based on ultrasound and established numerical methods, CFD technique is applied to analyze hemodynamic changes after TIPS and Laparoscopic splenectomy. In this paper, we applied two 3-D flow models to the hemodynamic analysis for two patients who received a TIPS and a laparoscopic splenectomy, both therapies for treating portal hypertension induced diseases. The current computer simulations give a quantitative analysis of the interplay between hemodynamics and TIPS or splenectomy. In conclusion, the presented computational model can be used for the theoretical analysis of TIPS and laparoscopic splenectomy, clinical decisions could be made based on the simulation results with personal properly treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app