JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Spectroscopic and biological activity studies of the chromium-binding peptide EEEEGDD.

While trivalent chromium has been shown at high doses to have pharmacological effects improving insulin resistance in rodent models of insulin resistance, the mechanism of action of chromium at a molecular level is not known. The chromium-binding and transport agent low-molecular-weight chromium-binding substance (LMWCr) has been proposed to be the biologically active form of chromium. LMWCr has recently been shown to be comprised of a heptapeptide of the sequence EEEEDGG. The binding of Cr(3+) to this heptapeptide has been examined. Mass spectrometric and a variety of spectroscopic studies have shown that multiple chromic ions bind to the peptide in an octahedral fashion through carboxylate groups and potentially small anionic ligands such as oxide and hydroxide. A complex of Cr and the peptide when administered intravenously to mice is able to decrease area under the curve in intravenous glucose tolerance tests. It can also restore insulin-stimulated glucose uptake in myotubes rendered insulin resistant by treating them with a high-glucose media.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app