JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mir-217 promotes inflammation and fibrosis in high glucose cultured rat glomerular mesangial cells via Sirt1/HIF-1α signaling pathway.

BACKGROUND: Silent information regulator 1 (Sirt1) plays a protective role in kidney. Sirt1 suppresses activation of hypoxia-inducible factor-1 alpha (HIF-1α), with MircroRNA-217 (Mir-217) being closely related to Sirt1. The relationship of Sirt1, HIF-1α and Mir-217, however, has never been reported in high glucose cultured rat glomerular mesangial cells (RMCs). Thus, we explored the role of Mir-217 on inflammation and fibrosis in RMCs cultured with high glucose in vitro through Sirt1/HIF-1α signaling pathway.

METHODS: Rat glomerular mesangial cells were pre-incubated with Sirt1 activator Resveratrol prior to high glucose treatment. Furthermore the cells were transiently transfected with Sirt1 small interfering RNA (siRNA), HIF-1α siRNA and Mir-217 inhibitor using Lipofectamine 2000. Real-time PCR was used to analyse the expression of Mir-217, Sirt1 mRNA and HIF-1α mRNA; Western Blot was used to observe protein expression of Sirt1, HIF-1α, connective tissue growth factor, endothelin-1 and fibronectin; enzyme-linked immunosorbent assay was used to detect protein expression of transforming growth factor-β1 and vascular endothelial growth factor.

RESULTS: High glucose increased Mir-217 expression. High glucose decreased Sirt1 expression, accompanied by the increased HIF-1α expression and then promoted inflammation and fibrosis. In addition, Mir-217 gene silencing or Resveratrol could suppress the expression of HIF-1α, which in turn restrained inflammation and fibrosis in rat glomerular mesangial cells cultured with high glucose.

CONCLUSION: This study clarified the role of Mir-217 in high glucose cultured rat glomerular mesangial cells through Sirt1/HIF-1α signaling pathway and provided new therapeutic targets for diabetic nephropathy. Copyright © 2016 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app