Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Brief Report: Arthritis in KRN T Cell Receptor-Transgenic Mice Does Not Require Interleukin-17 or Th17 Cells.

OBJECTIVE: Th17 cells and interleukin-17 (IL-17) cytokine family members are implicated in the pathogenesis of many rheumatic diseases. Most studies in mouse models of inflammatory arthritis have demonstrated a key role for the proinflammatory cytokine IL-17A and its receptor, the IL-17 receptor (IL-17R) A/C heterodimer. The aim of this study was to use a rigorous genetic approach to evaluate the contribution of Th17 cells and IL-17 in the autoantibody-dependent KRN T cell receptor-transgenic mouse model of arthritis.

METHODS: We bred KRN mice expressing the major histocompatibility complex class II molecule A(g7) (referred to as K/B/g7 mice) and genetically lacking the related cytokines IL-17A and IL-17F or their critical receptor subunit, IL-17RA. Using bone marrow transplantation, we generated mice in which hematopoietic cells from K/B/g7 donor mice lacked the key Th17-differentiating transcription factor, retinoic acid receptor-related orphan nuclear receptor γt (Rorγt).

RESULTS: K/B/g7 mice lacking both IL-17A and IL-17F produced normal titers of pathogenic autoantibodies, and arthritis developed in a typical manner. Similarly, neither IL-17RA nor Rorγt expression by hematopoietic cells was required for disease development in this model.

CONCLUSION: Despite prior reports suggesting that Th17 cells and IL-17A are crucially involved in the pathogenesis of arthritis in K/BxN mice, the results presented here provide genetic evidence that IL-17A and IL-17F, IL-17RA, and Rorγt expression by hematopoietic cells are dispensable for normal arthritis progression in the K/B/g7 mouse model system. We discuss potential explanations for the discrepancies between these 2 highly similar model systems. These findings plus those in other mouse models of arthritis provide insight regarding why therapeutic biologic agents targeting the Th17/IL-17 axis are beneficial in some human rheumatic diseases but not others.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app