Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

TRAF2 exerts opposing effects on basal and TNFα-induced activation of the classic IKK complex in hematopoietic cells in mice.

The role of TRAF2 and TRAF5 in TNFα-induced NF-κB activation has become complicated owing to the accumulation of conflicting data. Here, we report that 7-day-old TRAF2-knockout (KO) and TRAF2 TRAF5 double KO (TRAF2/5-DKO) mice exhibit enhanced canonical IκB kinase (IKK) and caspase-8 activation in spleen and liver, and that subsequent knockout of TNFα suppresses the basal activity of caspase-8, but not of IKK. In primary TRAF2 KO and TRAF2/5-DKO cells, TNFα-induced immediate IKK activation is impaired, whereas delayed IKK activation occurs normally; as such, owing to elevated basal and TNFα-induced delayed IKK activation, TNFα stimulation leads to significantly increased induction of a subset of NF-κB-dependent genes in these cells. In line with this, both TRAF2 KO and TRAF2/5-DKO mice succumb to a sublethal dose of TNFα owing to increased expression of NF-κB target genes, diarrhea and bradypnea. Notably, depletion of IAP1 and IAP2 (also known as BIRC2 and BIRC3, respectively) also results in elevated basal IKK activation that is independent of autocrine TNFα production and that impairs TNFα-induced immediate IKK activation. These data reveal that TRAF2, IAP1 and IAP2, but not TRAF5, cooperatively regulate basal and TNFα-induced immediate IKK activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app