Add like
Add dislike
Add to saved papers

Fluoxetine-induced toxicity results in human placental glutathione S-transferase-π (GST-π) dysfunction.

CONTEXT: The antidepressant drug fluoxetine (FLU) is considered in the group of selective serotonine re-uptake inhibitors. Its distribution in brain and binding to human brain glutathione S-transferase-π (GST-π) have been shown. FLU can cross blood brain barrier and placenta, accumulate in fetus and may cause congenital malformations.

OBJECTIVE: To elucidate the interaction of placental GST-π with FLU.

MATERIALS AND METHODS: First, concentration-dependent inhibition of human placental GST-π was evaluated by using different FLU concentrations and then 0.3125, 0.625, 1.25, 2.5 and 5 mM FLU concentrations were chosen and tested while keeping GSH concentration constant and 1-chloro-2,4-dinitrobenzene (CDNB) concentration varied and vice versa. The data were evaluated with different kinetic models and Statistica 9.00 for Windows.

RESULTS: The Vm, at variable [CDNB] (142 ± 16 U/mg protein) was 3 times higher than the Vm obtained at variable [GSH] (49 ± 4 U/mg protein). On the other hand, the Km for CDNB was ∼10 times higher than the Km for GSH (1.99 ± 0.36 mM versus 0.21 ± 0.06 mM). The IC50 value for FLU was 8.6 mM. Both at constant [CDNB] and variable [GSH] and at constant [GSH] and variable [CDNB] the inhibition types were competitive with the Ki values of 5.62 ± 4.37 and 8.09 ± 1.27 mM, respectively.

CONCLUSION: Although the Ki values obtained for FLU in vitro are high, due to their uneven distribution, long elimination time and inhibitory behavior on detoxification systems, it may cause defects in adults but these effects may be much more severe in fetus and result in congenital malformations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app