Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Characterization of Sizes of Aggregates of Insulin Analogs and the Conformations of the Constituent Protein Molecules: A Concomitant Dynamic Light Scattering and Raman Spectroscopy Study.

To generate aggregates, 3 insulin analogs, lispro, aspart, and glulisine, were incubated without phenolic preservatives for 30 days at 37 °C. As a function of incubation time, aggregation was quantified with size exclusion chromatography, and the sizes of aggregates and the conformations of the constituent molecules were characterized with concomitant dynamic light scattering and Raman spectroscopy. During incubation, lispro was progressively converted into soluble aggregates with hydrodynamic diameters of circa 15 nm, and 95% of the native protein had aggregated at day 30. Raman spectroscopy documented that aggregation resulted in conversion of a large fraction of native alpha helix into nonnative beta sheet structure and a distortion of disulfide bonds. In contrast, for aspart and glulisine only 20% of the native proteins aggregated after 30 days, and minimal structural perturbations were detected. In addition, consistent with the relative aggregation rates during isothermal incubation, Raman spectroscopy showed that during heating the onset temperature for secondary structural perturbations of lispro occurred 7 °C-10 °C lower than those for aspart or glulisine. Overall the results of this study demonstrated that-as in the case during formation of amyloid fibrils from insulin-formation of soluble aggregates of lispro resulted in a high level of conversion of alpha helix into beta sheet.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app