Add like
Add dislike
Add to saved papers

Development of Biomarker Models to Predict Outcomes in Lupus Nephritis.

OBJECTIVE: The American College of Rheumatology guidelines for the treatment of lupus nephritis recommend change in induction therapy when response to therapy has not occurred within 6 months. Response is not defined, and renal fibrosis can occur while waiting for this end point. Therefore, a decision support tool to better define response is needed to guide clinicians when starting patients on therapy. This study was undertaken to identify biomarker models with sufficient predictive power to develop such a tool.

METHODS: Urine samples from 140 patients with biopsy-proven lupus nephritis who had not yet started induction therapy were analyzed for a panel of urinary biomarkers. Univariate receiver operating characteristic (ROC) curves were generated for each individual biomarker and compared to the ROC area under the curve values from machine learning models developed using random forest algorithms. Biomarker models of outcome developed with novel markers in addition to clinical markers were compared to those developed with traditional clinical markers alone.

RESULTS: Models developed with the combined traditional and novel biomarker panels demonstrated clinically meaningful predictive power. Markers most predictive of response were chemokines, cytokines, and markers of cellular damage.

CONCLUSION: This is the first study to demonstrate the power of low-abundance biomarker panels and machine learning algorithms for predicting lupus nephritis outcomes. This is a critical first step in research to develop clinically meaningful decision support tools.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app