Add like
Add dislike
Add to saved papers

Evidence for nociceptin/orphanin FQ (NOP) but not µ (MOP), δ (DOP) or κ (KOP) opioid receptor mRNA in whole human blood.

BACKGROUND: While it is well known that opioids depress the immune system, the site(s) of action for this depression is highly controversial. Immune modulation could occur directly at the immune cell or centrally via the hypothalamic-pituitary-adrenal axis. In a number of studies using individual enriched immune cell populations we have failed to detect classical µ (MOP), δ (DOP) and κ (KOP) receptors. The non-classical nociceptin/orphanin FQ (N/OFQ) receptor (NOP) is expressed on all cells examined thus far. Our hypothesis was that immune cells do not express classical opioid receptors and that using whole blood would definitively answer this question.

METHODS: Whole blood (containing all immune cell types) was incubated with opioids (morphine and fentanyl) commonly encountered in anaesthesia and with agents mimicking sepsis [lipopolysaccharide (LPS) and peptidoglycan G (PepG)]. Opioid receptor mRNA expression was assessed by endpoint polymerase chain reaction (PCR) with gel visualisation and quantitative PCR.

RESULTS: Classical MOP, DOP, and KOP receptors were not detected in any of the samples tested either at rest or when challenged with opioids, LPS or PepG. Commercial primers for DOP did not perform well in quantitative PCR, so the absence of expression was confirmed using a traditional gel-based approach. NOP receptors were detected in all samples; expression was unaffected by opioids and reduced by LPS/PepG combinations.

CONCLUSIONS: Classical opioid receptors are not expressed on circulating immune cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app