JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Discovery of a frameshift mutation in podocalyxin-like (PODXL) gene, coding for a neural adhesion molecule, as causal for autosomal-recessive juvenile Parkinsonism.

BACKGROUND: Mutations in known genes for inherited forms of Parkinson's disease (PD) account for <30% of familial PD (FPD) implying that more causal gene(s) remain to be identified. We attempted to discover the putative causal variant in an Indian family with autosomal-recessive juvenile Parkinsonism (ARJP), tested negative for mutations in PARK2, PINK1 and DJ1.

METHODS: Whole exomes of two affected siblings were sequenced. Variants prioritised were screened for segregation with disease in the family by targeted sequencing. Gene thus identified was screened for index/additional exonic mutations, if any, in an independent PD cohort by PCR sequencing. Variants observed were functionally validated in differentiated PC12 cells.

RESULTS: A novel homozygous frameshift mutation, c.89_90insGTCGCCCC in exon 1 of podocalyxin-like gene (PODXL, 7q32-33), resulting in loss of protein, segregated with disease in the family. Mutant allele was absent in 186 healthy controls screened by PCR sequencing and in control exomes available in the laboratory and public databases. Screening of additional 212 sporadic and 68 FPD cases identified three novel heterozygous missense variants namely c.1285C>A, c.1118G>A and c.881G>A in three unrelated cases. Significant differences in neurite branching and length (p<0.0001) were observed in PC12 cells with wild-type and mutant constructs.

CONCLUSIONS: Based on the genetic and functional evidence in this study and literature support on the role of PODXL in neural development, a novel frameshift mutation in PODXL seems to be the likely cause of ARJP in this family. This is the first report suggesting the possible role of a neurodevelopmental pathway in PD aetiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app