Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Video-Audio Media
Add like
Add dislike
Add to saved papers

Genome-wide Mapping of Drug-DNA Interactions in Cells with COSMIC (Crosslinking of Small Molecules to Isolate Chromatin).

The genome is the target of some of the most effective chemotherapeutics, but most of these drugs lack DNA sequence specificity, which leads to dose-limiting toxicity and many adverse side effects. Targeting the genome with sequence-specific small molecules may enable molecules with increased therapeutic index and fewer off-target effects. N-methylpyrrole/N-methylimidazole polyamides are molecules that can be rationally designed to target specific DNA sequences with exquisite precision. And unlike most natural transcription factors, polyamides can bind to methylated and chromatinized DNA without a loss in affinity. The sequence specificity of polyamides has been extensively studied in vitro with cognate site identification (CSI) and with traditional biochemical and biophysical approaches, but the study of polyamide binding to genomic targets in cells remains elusive. Here we report a method, the crosslinking of small molecules to isolate chromatin (COSMIC), that identifies polyamide binding sites across the genome. COSMIC is similar to chromatin immunoprecipitation (ChIP), but differs in two important ways: (1) a photocrosslinker is employed to enable selective, temporally-controlled capture of polyamide binding events, and (2) the biotin affinity handle is used to purify polyamide-DNA conjugates under semi-denaturing conditions to decrease DNA that is non-covalently bound. COSMIC is a general strategy that can be used to reveal the genome-wide binding events of polyamides and other genome-targeting chemotherapeutic agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app