JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Feasibility and safety of low-flow extracorporeal carbon dioxide removal to facilitate ultra-protective ventilation in patients with moderate acute respiratory distress sindrome.

BACKGROUND: Mechanical ventilation with a tidal volume (VT) of 6 mL/kg/predicted body weight (PBW), to maintain plateau pressure (Pplat) lower than 30 cmH2O, does not completely avoid the risk of ventilator induced lung injury (VILI). The aim of this study was to evaluate safety and feasibility of a ventilation strategy consisting of very low VT combined with extracorporeal carbon dioxide removal (ECCO2R).

METHODS: In fifteen patients with moderate ARDS, VT was reduced from baseline to 4 mL/kg PBW while PEEP was increased to target a plateau pressure--(Pplat) between 23 and 25 cmH2O. Low-flow ECCO2R was initiated when respiratory acidosis developed (pH < 7.25, PaCO2 > 60 mmHg). Ventilation parameters (VT, respiratory rate, PEEP), respiratory compliance (CRS), driving pressure (DeltaP = VT/CRS), arterial blood gases, and ECCO2R system operational characteristics were collected during the period of ultra-protective ventilation. Patients were weaned from ECCO2R when PaO2/FiO2 was higher than 200 and could tolerate conventional ventilation settings. Complications, mortality at day 28, need for prone positioning and extracorporeal membrane oxygenation, and data on weaning from both MV and ECCO2R were also collected.

RESULTS: During the 2 h run in phase, VT reduction from baseline (6.2 mL/kg PBW) to approximately 4 mL/kg PBW caused respiratory acidosis (pH < 7.25) in all fifteen patients. At steady state, ECCO2R with an average blood flow of 435 mL/min and sweep gas flow of 10 L/min was effective at correcting pH and PaCO2 to within 10 % of baseline values. PEEP values tended to increase at VT of 4 mL/kg from 12.2 to 14.5 cmH2O, but this change was not statistically significant. Driving pressure was significantly reduced during the first two days compared to baseline (from 13.9 to 11.6 cmH2O; p < 0.05) and there were no significant differences in the values of respiratory system compliance. Rescue therapies for life threatening hypoxemia such as prone position and ECMO were necessary in four and two patients, respectively. Only two study-related adverse events were observed (intravascular hemolysis and femoral catheter kinking).

CONCLUSIONS: The low-flow ECCO2R system safely facilitates a low volume, low pressure ultra-protective mechanical ventilation strategy in patients with moderate ARDS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app