JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Sodium as Coupling Cation in Respiratory Energy Conversion.

Among the alkali cations, Na(+) has an extraordinary role in living cells since it is used to charge the battery of life. To this end, sophisticated protein complexes in biological membranes convert chemical energy obtained from oxidation of NADH, or hydrolysis of ATP, into an electrochemical gradient of sodium ions. Cells use this so-called sodium-motive force stored in energy-converting membranes for important processes like uptake of nutrients, motility, or expulsion of toxic compounds. The Na(+) pumps act in concert with other enzymes embedded in the lipid membrane, and together they form the respiratory chain which achieves the oxidation of NADH derived from nutrients under formation of an electrochemical sodium (or proton) gradient. We explain why Na(+) pumps are important model systems for the homologous, proton-translocating complexes, and hope to convince the reader that studying the Na(+)-translocating ATP synthase from the unimpressive bacterium Ilyobacter tartaricus had a big impact on our understanding of energy conversion by human ATP synthase. The Na(+)-translocating systems described here are either driven by the oxidation of NADH, the carrier of redox equivalents of cells, or by the hydrolysis of adenosine 5'-triphosphate, the universal high-energy compound of cells. The electrochemical energy provided by these respiratory Na(+) pumps, the NADH dehydrogenase or the ATPase, drives other Na(+) transport systems like the bacterial flagellum discussed in the last part of this chapter. The flagellar motor does not represent a Na(+) pump, but like ATPase, it operates by a rotational mechanism. By comparing these two Na(+) -translocating, rotary machines, we obtain new insight into the possible mechanisms of Na(+) transport through the stator proteins of the flagellar motor. Na(+) pumps are widespread in pathogenic bacteria where they play an important role in metabolism, making them novel targets for antibiotics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app