JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Symmetry constraints during the development of anisotropic spinodal patterns.

Spinodal decomposition is a phase-separation phenomenon occurring at non-equilibrium conditions. In isotropic materials, it is expected to improve the physical properties, in which modulated structures arise from a single system of spinodal waves. However, in anisotropic materials this process is controversial and not very well understood. Here, we report anisotropic spinodal decomposition patterns in single crystals of K-rich feldspar with macroscopic monoclinic 2/m symmetry. The periodicity of the spinodal waves at ~450 nm produces a blue iridescence, typical of the gemstone moonstone. Stripe patterns in the (010) plane, labyrinthine patterns in the (100) plane, and coexistence of the two patterns in the (110) plane are first resolved by scanning Rayleigh scattering microscopy. Two orthogonal systems of spinodal waves with the same periodicity are derived from the features and orientations of the patterns on the crystal surfaces. The orthogonality of the waves is related to the perpendicularity of the binary axis and the mirror plane. Thus, the spinodal patterns must be controlled by symmetry constraints during phase separation at early stages. Unusual and new properties could be developed in other anisotropic materials by thermal treatment inducing two orthogonal systems of periodic spinodal waves.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app