JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cytokines Regulate β-Cell Thioredoxin-interacting Protein (TXNIP) via Distinct Mechanisms and Pathways.

Thioredoxin-interacting protein (TXNIP) is a key regulator of diabetic β-cell apoptosis and dysfunction, and TXNIP inhibition prevents diabetes in mouse models of type 1 and type 2 diabetes. Although we have previously shown that TXNIP is strongly induced by glucose, any regulation by the proinflammatory cytokines tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and interferon γ (IFNγ) has remained largely unexplored. Moreover, even though this three-cytokine mixture is widely used to mimic type 1 diabetes in vitro, the mechanisms involved are not fully understood. Interestingly, we have now found that this cytokine mixture increases β-cell TXNIP expression; however, although TNFα had no effect, IL-1β surprisingly down-regulated TXNIP transcription, whereas IFNγ increased TXNIP levels in INS-1 β-cells and primary islets. Human TXNIP promoter analyses and chromatin immunoprecipitation studies revealed that the IL-1β effect was mediated by inhibition of carbohydrate response element binding protein activity. In contrast, IFNγ increased pro-apoptotic TXNIP post-transcriptionally via induction of endoplasmic reticulum stress, activation of inositol-requiring enzyme 1α (IRE1α), and suppression of miR-17, a microRNA that targets and down-regulates TXNIP. In fact, miR-17 knockdown was able to mimic the IFNγ effects on TXNIP, whereas miR-17 overexpression blunted the cytokine effect. Thus, our results demonstrate for the first time that the proinflammatory cytokines TNFα, IL-1β, and IFNγ each have distinct and in part opposing effects on β-cell TXNIP expression. These findings thereby provide new mechanistic insight into the regulation of TXNIP and β-cell biology and reveal novel links between proinflammatory cytokines, carbohydrate response element binding protein-mediated transcription, and microRNA signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app