Add like
Add dislike
Add to saved papers

Computational Detection of piRNA in Human Using Support Vector Machine.

BACKGROUND: Piwi-interacting RNAs (piRNAs) are small non-coding RNAs (ncRNAs), with a length of about 24-32 nucleotides, which have been discovered recently. These ncRNAs play an important role in germline development, transposon silencing, epigenetic regulation, protecting the genome from invasive transposable elements, and the pathophysiology of diseases such as cancer. piRNA identification is challenging due to the lack of conserved piRNA sequences and structural elements.

METHODS: To detect piRNAs, an appropriate feature set, including 8 diverse feature groups to encode each RNA was applied. In addition, a Support Vector Machine (SVM) classifier was used with optimized parameters for RNA classification. According to the obtained results, the classification performance using the optimized feature subsets was much higher than the one in previously published studies.

RESULTS: Our results revealed 98% accuracy, Mathew' correlation coefficient of 98% and 99% specificity in discriminating piRNAs from the other RNAs. Also, the obtained results show that the proposed method outperforms its competitors.

CONCLUSION: In this paper, a prediction method was proposed to identify piRNA in human. Also, 48 heterogeneous features (sequence and structural features) were used to encode RNAs. To assess the performance of the method, a benchmark dataset containing 515 piRNAs and 1206 types of other RNAs was constructed. Our method reached the accuracy of 99% on the benchmark dataset. Also, our analysis revealed that the structural features are the most contributing features in piRNA prediction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app