JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A role for ATP-sensitive potassium channels in the anticonvulsant effects of triamterene in mice.

There are reports indicating that diuretics including chlorothiazide, furosemide, ethacrynic acid, amiloride and bumetanide can have anticonvulsant properties. Intracellular acidification appears to be a mechanism for the anticonvulsant action of some diuretics. This study was conducted to investigate whether or not triamterene, a K(+)-sparing diuretic, can generate protection against seizures induced by intravenous or intraperitoneal pentylenetetrazole (PTZ) models. And to see if, triamterene can withstand maximal electroshock seizure (MES) in mice. We also investigated to see if there is any connection between triamterene's anti-seizure effect and ATP-sensitive K(+) (KATP) channels. Five days triamterene oral administration (10, 20 and 40 mg/kg), significantly increased clonic seizure threshold which was induced by intravenous pentylenetetrazole. Triamterene (10, 20 and 40 mg/kg) treatment also increased the latency of clonic seizure and decreased its frequency in intraperitoneal PTZ model. Administration of triamterene (20 mg/kg) also decreased the incidence of tonic seizure in MES-induced seizure. Co-administration of a KATP sensitive channel blocker, glibenclamide, in the 6th day, 60 min before intravenous PTZ blocked triamterene's anticonvulsant effect. A KATP sensitive channel opener, diazoxide, enhanced triamterene's anti-seizure effect in both intravenous PTZ or MES seizure models. At the end, triamterene exerts anticonvulsant effect in 3 seizure models of mice including intravenous PTZ, intraperitoneal PTZ and MES. The anti-seizure effect of triamterene probably is induced through KATP channels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app