JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Chaperone complex BAG2-HSC70 regulates localization of Caenorhabditis elegans leucine-rich repeat kinase LRK-1 to the Golgi.

Mutations in LRRK2 are linked to autosomal dominant forms of Parkinson's disease. We identified two human proteins that bind to LRRK2: BAG2 and HSC70, which are known to form a chaperone complex. We characterized the role of their Caenorhabditis elegans homologues, UNC-23 and HSP-1, in the regulation of LRK-1, the sole homologue of human LRRK2. In C. elegans, LRK-1 determines the polarized sorting of synaptic vesicle (SV) proteins to the axons by excluding SV proteins from the dendrite-specific transport machinery in the Golgi. In unc-23 mutants, SV proteins are localized to both presynaptic and dendritic endings in neurons, a phenotype also observed in lrk-1 deletion mutants. Furthermore, we isolated mutations in the hsp-1 gene that can suppress the unc-23, but not the lrk-1 defect. We show that UNC-23 determines LRK-1 localization to the Golgi apparatus in cooperation with HSP-1. These results describe a chaperone-dependent mechanism through which LRK-1 localization is regulated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app