Clinical Trial
Journal Article
Randomized Controlled Trial
Add like
Add dislike
Add to saved papers

Carbohydrate dependence during prolonged simulated cycling time trials.

PURPOSE: We determined the effect of suppressing lipolysis via administration of Nicotinic acid (NA) and pre-exercise feeding on rates of whole-body substrate utilisation and cycling time trial (TT) performance.

METHODS: In a randomised, single-blind, crossover design, eight trained male cyclists/triathletes completed two series of TTs in which they performed a predetermined amount of work calculated to last ~60, 90 and 120 min. TTs were undertaken after a standardised breakfast (2 g kg(-1) BM of carbohydrate (CHO)) and ingestion of capsules containing either NA or placebo (PL).

RESULTS: Plasma [free fatty acids] were suppressed with NA, but increased in the later stages of TT90 and TT120 with PL (p < 0.05). There was no treatment effect on time to complete TT60 (60.4 ± 4.1 vs. 59.3 ± 3.4 min) or TT90 (90.4 ± 9.1 vs. 89.5 ± 6.6 min) for NA and PL, respectively. However, TT120 was slower with NA (123.1 ± 5.7 vs. 120.1 ± 8.7 min, p < 0.001), which coincided with a decline in plasma [glucose] during the later stages of this ride (p < 0.05). For TTs of the same duration, the rates of whole-body CHO oxidation were unaffected by NA, but decreased with increasing TT time (p < 0.05). CHO was the predominant substrate for all TTs contributing between 83 and 94 % to total energy expenditure, although there was a small use of lipid-based fuels for all rides.

CONCLUSION: (1) NA impaired cycling TT performance lasting 120 min, (2) cycling TTs lasting from 60 to 120 min are CHO dependent, and (3) there is an obligatory use of lipid-based fuels in TTs lasting 1-2 h.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app