JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Attenuation of neuropathic pain and neuroinflammatory responses by a pyranocoumarin derivative, anomalin in animal and cellular models.

The present study investigated the neuropathic pain, anti-neuroinflammatory and neuroprotective properties of a pyranocoumarin derivative (anomalin) in in vivo and in vitro models. An in vivo streptozotocin (STZ)-induced diabetic neuropathic pain model demonstrated that anomalin significantly suppressed neuropathic pain in mice. To identify the molecular mechanism of the anti-neuropathic pain activity of anomalin, sodium-nitroprusside (SNP)-induced neuroinflammation in neuro-2a (N2a) cells was further investigated in signaling pathways. The effects of anomalin against SNP-induced toxicity, nitrite production and related mRNA gene expression (iNOS and COX-2) were considerably reduced by anomalin in the SNP-induced N2a cells. In the molecular signaling pathway, anomalin effectively blocked the SNP-induced activation of the IKKα/β, IκBα, ERK1/2 and p38 MAPK pathways. Furthermore, anomalin remarkably reduced the increase in the SNP-induced nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. Additionally, the pro-inflammatory cytokines level was remarkably inhibited by anomalin in high glucose-induced DRG primary neurons and SNP-induced N2a cells. These findings indicate that anomalin has anti-neuropathic pain, anti-neuroinflammatory and neuroprotective effects against STZ-induced diabetic type I neuropathic pain and SNP-induced in neuronal cell models via the inactivation of the NF-κB, Nrf2 and MAPK signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app