JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Blockage of the Ryanodine Receptor via Azumolene Does Not Prevent Mechanical Ventilation-Induced Diaphragm Atrophy.

Mechanical ventilation (MV) is a life-saving intervention for patients in respiratory failure. However, prolonged MV causes the rapid development of diaphragm muscle atrophy, and diaphragmatic weakness may contribute to difficult weaning from MV. Therefore, developing a therapeutic countermeasure to protect against MV-induced diaphragmatic atrophy is important. MV-induced diaphragm atrophy is due, at least in part, to increased production of reactive oxygen species (ROS) from diaphragm mitochondria and the activation of key muscle proteases (i.e., calpain and caspase-3). In this regard, leakage of calcium through the ryanodine receptor (RyR1) in diaphragm muscle fibers during MV could result in increased mitochondrial ROS emission, protease activation, and diaphragm atrophy. Therefore, these experiments tested the hypothesis that a pharmacological blockade of the RyR1 in diaphragm fibers with azumolene (AZ) would prevent MV-induced increases in mitochondrial ROS production, protease activation, and diaphragmatic atrophy. Adult female Sprague-Dawley rats underwent 12 hours of full-support MV while receiving either AZ or vehicle. At the end of the experiment, mitochondrial ROS emission, protease activation, and fiber cross-sectional area were determined in diaphragm muscle fibers. Decreases in muscle force production following MV indicate that the diaphragm took up a sufficient quantity of AZ to block calcium release through the RyR1. However, our findings reveal that AZ treatment did not prevent the MV-induced increase in mitochondrial ROS emission or protease activation in the diaphragm. Importantly, AZ treatment did not prevent MV-induced diaphragm fiber atrophy. Thus, pharmacological inhibition of the RyR1 in diaphragm muscle fibers is not sufficient to prevent MV-induced diaphragm atrophy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app