Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Co-expression of Dorsal and Rel2 Negatively Regulates Antimicrobial Peptide Expression in the Tobacco Hornworm Manduca sexta.

Nuclear factor κB (NF-κB) plays an essential role in regulation of innate immunity. In mammals, NF-κB factors can form homodimers and heterodimers to activate gene expression. In insects, three NF-κB factors, Dorsal, Dif and Relish, have been identified to activate antimicrobial peptide (AMP) gene expression. However, it is not clear whether Dorsal (or Dif) and Relish can form heterodimers. Here we report the identification and functional analysis of a Dorsal homologue (MsDorsal) and two Relish short isoforms (MsRel2A and MsRel2B) from the tobacco hornworm, Manduca sexta. Both MsRel2A and MsRel2B contain only a Rel homology domain (RHD) and lack the ankyrin-repeat inhibitory domain. Overexpression of the RHD domains of MsDorsal and MsRel2 in Drosophila melanogaster S2 and Spodoptera frugiperda Sf9 cells can activate AMP gene promoters from M. sexta and D. melanogaster. We for the first time confirmed the interaction between MsDorsal-RHD and MsRel2-RHD, and suggesting that Dorsal and Rel2 may form heterodimers. More importantly, co-expression of MsDorsal-RHD with MsRel2-RHD suppressed activation of several M. sexta AMP gene promoters. Our results suggest that the short MsRel2 isoforms may form heterodimers with MsDorsal as a novel mechanism to prevent over-activation of antimicrobial peptides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app