Clinical Trial
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effect of late sodium current inhibition on MRI measured diastolic dysfunction in aortic stenosis: a pilot study.

BMC Research Notes 2016 Februrary 5
BACKGROUND: Ranolazine is a new anti-anginal drug that acts via late sodium current inhibition, and has been shown to improve diastolic dysfunction in isolated myocytes. Diastolic dysfuntion is common in patients with aortic stenosis (AS), and precedes symptom development and systolic dysfunction. The purpose of this study was to assess the effects of ranolazine on peak early diastolic strain rate (PEDSR) and exercise capacity in patients with AS.

METHODS: Patients with asymptomatic moderate to severe AS and diastolic dysfunction underwent trans-thoracic echocardiography, exercise testing and cardiac magnetic resonance (CMR) imaging at baseline, 6 weeks after commencing ranolazine and at 10 weeks (4 weeks after discontinuation). Diastolic function was assessed using PEDSR measured on tagged CMR images.

RESULTS: Fifteen patients (peak pressure gradient 48.8 ± 12.4 mmHg, mean pressure gradient 27.1 ± 7.5 mmHg, aortic valve area 1.26 ± 0.31 cm(2)) completed the week-6 visit and 13 completed the final visit. Global PEDSR did not significantly increase from baseline (0.79 ± 0.15) to week-6 (0.86 ± 0.18, p = 0.198). There was a borderline significant increase in total exercise duration from 10.47 ± 3.68 min to 11.60 ± 3.25 min (p = 0.06).

CONCLUSION: This small pilot study did not show a significant improvement in diastolic function with the use of ranolazine in asymptomatic patients with moderate-severe AS. Further studies with a larger population may be indicated. EduraCT number 2011-000111-26.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app