JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Upregulation of metastasis-associated PRL-3 initiates chordoma in zebrafish.

The metastasis-associated phosphatase of regenerating liver-3 (PRL-3) plays multiple roles in progression of various human cancers; however, significance of its role during development has not been addressed. Here we cloned and characterized the expression pattern of zebrafish prl-3 transcript and showed that it is ubiquitiously expressed in the first 24 h of development with both maternal and zygotic expressions. The transcripts become progressively restricted to the notochord, vessels and the intestine by 96 h post-fertilization. Notably, overexpression of zebrafish Prl-3 (zPrl-3) and human PRL-3 induces notochord malformation in zebrafish. This phenotype resembles chordoma and is confirmed by associated misexpression of notochord-specific markers. Clinical significance of the PRL-3 in chordoma is strongly suggested by detection of PRL-3 antigen in clinical chordoma specimens. Collectively, our results uncovered that aberrant overexpression of PRL-3 could initiate chordoma in early development and suggest the use of PRL-3 could be used as a predictor and a therapeutic target for chordoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app