JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Isolation and Analysis of Suppressor Mutations in Tumor-Targeted msbB Salmonella.

Tumor-targeted Salmonella offers a promising approach to the delivery of therapeutics for the treatment of cancer. The Salmonella strains used, however, must be stably attenuated in order to provide sufficient safety for administration. Approaches to the generation of attenuated Salmonella strains have included deletion of the msbB gene that is responsible for addition of the terminal myristol group to lipid A. In the absence of myristoylation, lipid A is no longer capable of inducing septic shock, resulting in a significant enhancement in safety. However, msbB Salmonella strains also exhibit an unusual set of additional physiological characteristics, including sensitivities to NaCl, EGTA, deoxycholate, polymyxin, and CO2. Suppressor mutations that compensate for these sensitivities include somA, Suwwan, pmrA (C), and zwf. We describe here methods for isolation of strains with compensatory mutations that suppress these types of sensitivities and techniques for determining their underlying genetic changes and analysis of their effects in murine tumor models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app