Add like
Add dislike
Add to saved papers

Stochastic dynamic study of optical transition properties of single GFP-like molecules.

Due to high fluctuations and quantum uncertainty, the processes of single-molecules should be treated by stochastic methods. To study fluorescence time series and their statistical properties, we have applied two stochastic methods, one of which is an analytic method to study the off-time distributions of certain fluorescence transitions and the other is Gillespie's method of stochastic simulations. These methods have been applied to study the optical transition properties of two single-molecule systems, GFPmut2 and a Dronpa-like molecule, to yield results in approximate agreement with experimental observations on these systems. Rigorous oscillatory time series of GFPmut2 before it unfolds in the presence of denaturants have not been obtained based on the stochastic method used, but, on the other hand, the stochastic treatment puts constraints on the conditions under which such oscillatory behavior is possible. Furthermore, a sensitivity analysis is carried out on GFPmut2 to assess the effects of transition rates on the observables, such as fluorescence intensities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app