Add like
Add dislike
Add to saved papers

Skeletal muscle dysfunction in the db/db mouse model of type 2 diabetes.

Muscle & Nerve 2016 September
INTRODUCTION: In this study we examined the mechanisms of motor dysfunction in type 2 diabetes.

METHODS: Contractile force was measured in isolated nerve-muscle preparations of db/db mice using various protocols for electrical stimulation. Sarcoplasmic reticulum Ca(2+) adenosine triphosphatase protein (SERCA) was quantified by comparing Ca(2+) -dependent and non-specific phosphorylation.

RESULTS: Compared with controls, the muscle-nerve preparations of db/db mice displayed muscle atrophy, reduced axonal excitability, and force deficit when stimulated via the nerve. Muscle relaxation after contraction was slowed, and SERCA content was reduced. In contrast, the sensitivity of the neuromuscular junction to tubocurarine and muscle fiber excitability were not affected.

CONCLUSIONS: The force deficit in db/db muscles was caused by atrophy and failure of neuromuscular signal transmission related to motor nerve axonal dysfunction. The slowed relaxation rate generally observed in diabetic muscles can, to a large extent, be explained by decreased SERCA pump content. Muscle Nerve 54: 460-468, 2016.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app