JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Synthesis of rebaudioside-A by enzymatic transglycosylation of stevioside present in the leaves of Stevia rebaudiana Bertoni.

Food Chemistry 2016 June 2
Rebaudioside-A is the second most abundant sweet diterpene glycoside (1-3%) present in the leaves of Stevia rebaudiana Bertoni, and is now being considered as a possible sucrose substitute due to its pleasant organoleptic properties and associated health benefits. In the present study, a novel in situ enzymatic transglycosylation of stevioside has been developed by pre-treating the stevia leaves with cellulase and adding soluble starch as the glucosyl donor. The results confirm that the transglycosylation of stevioside led to an enrichment in the rebaudioside-A content from 4% to 66%. This was further purified by multiple column chromatography to obtain 95% pure rebaudioside-A. The isolated rebaudioside-A showed concentration-dependent α-glucosidase inhibitory activity with IC50=35.01 μg/ml. Thus the study highlights the biotransformation of stevioside present in stevia leaves to rebaudioside-A by a simple, inexpensive and eco-friendly process that has commercial potential.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app