JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Age-dependent action of reactive oxygen species on transmitter release in mammalian neuromuscular junctions.

Neurobiology of Aging 2016 Februrary
Reactive oxygen species (ROS) are implicated in aging, but the neurobiological mechanisms of ROS action are not fully understood. Using electrophysiological techniques and biochemical assays, we studied the age-dependent effect of hydrogen peroxide (H2O2) on acetylcholine release in rat diaphragm neuromuscular junctions. H2O2 significantly inhibited both spontaneous (measured as frequency of miniature end-plate potentials) and evoked (amplitude of end-plate potentials) transmitter release in adult rats. The inhibitory effect of H2O2 was much stronger in old rats, whereas in newborns tested during the first postnatal week, H2O2 did not affect spontaneous release from nerve endings and potentiated end-plate potentials. Proteinkinase C activation or intracellular Ca2+ elevation restored redox sensitivity of miniature end-plate potentials in newborns. The resistance of neonates to H2O2 inhibition was associated with higher catalase and glutathione peroxidase activities in skeletal muscle. In contrast, the activities of these enzymes were downregulated in old rats. Our data indicate that the vulnerability of transmitter release to oxidative damage strongly correlates with aging and might be used as an early indicator of senescence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app