Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Exercise modulates synaptic acetylcholinesterase at neuromuscular junctions.

Neuroscience 2016 April 6
Acetylcholinesterase plays a major role in neuromuscular transmission and is regulated by neuromuscular activity. Since fast-twitch motor units are recruited with increased motor demand, we examined acetylcholinesterase regulation in rat leg muscles following treadmill training. Total acetylcholinesterase and specifically the membrane-bound tetramer increased in exercised fast-, but not slow-twitch muscles, while other isoforms remained unchanged. Synaptic acetylcholinesterase increased markedly in neuromuscular junctions of trained fibers, without concomitant changes in synaptic acetylcholine receptor, thus elevating synaptic acetylcholinesterase/receptor ratios. Electron microscopy showed that acetylcholinesterase increased in postjunctional folds and primary cleft, where it was added adjacent to the postsynaptic muscle membrane. Thus, although the primary acetylcholinesterase at the neuromuscular junction is the collagen-tailed asymmetric isoform associated with synaptic basal lamina, physiological demands such as strenuous exercise, or potentially pathological conditions, can selectively recruit the membrane-bound acetylcholinesterase tetramer to the synapse for optimal synaptic transmission.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app