JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Jumonji Domain Containing Protein 6 Is Decreased in Human Preeclamptic Placentas and Regulates sFLT-1 Splice Variant Production.

The anti-angiogenic protein, soluble fms-like tyrosine kinase-1 (sFLT-1), plays a central role in preeclamptic pathophysiology. A splice variant of FLT-1 (VEGF receptor 1), sFLT-1 is released in excessive amounts from the preeclamptic placenta into the maternal circulation, where it causes endothelial dysfunction manifesting as end-organ disease. However, the mechanisms regulating its production within the placenta remain poorly understood. Recently it was shown in endothelial cells that Jumonji domain containing protein 6 (JMJD6) hydroxylates U2 small nuclear ribonucleoprotein auxiliary factor 65-kDa subunit (U2AF65, a component of the splicesome). The hydroxylation by JMJD6 is oxygen dependent. Under hypoxia, JMJD6 is less able to hydroxylate U2AF65, and this unhydroxylated form of U2AF65 biases splicing of FLT-1 to sFLT-1. We assessed whether oxygen-sensing JMJD6 is differentially expressed in preeclamptic placenta and regulates sFLT-1 splicing in placenta via U2AF65. JMJD6 protein expression was significantly reduced in preterm preeclamptic placenta (P < 0.0001; n = 21) relative to preterm controls (n = 10). Exposing both placental and endothelial cells to hypoxia significantly reduced JMJD6 mRNA and increased sFLT-1 mRNA and protein expression. Silencing JMJD6 in primary endothelial and trophoblast cells significantly increased sFLT-1 secretion. Next, we examined whether these molecules may be directly interacting. We demonstrated that placental U2AF65 colocalized with JMJD6. In turn, we found JMJD6 directly interacts with U2AF65, which in turn produces sFLT-1 mRNA transcripts. Taken together, our findings provide evidence that JMJD6 may play a role in regulating the production of sFLT-1 in the preeclamptic placenta. Decreased placental JMJD6 expression may be an important component to the pathophysiology of preeclampsia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app