JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pharmacologic blockade and genetic deletion of androgen receptor attenuates aortic aneurysm formation.

BACKGROUND: Testosterone is theorized to play a major role in the pathophysiology of abdominal aortic aneurysms (AAAs) because this disease occurs primarily in men. The role of the androgen receptor (AR) in the formation of AAAs has not been well elucidated, and therefore, it is hypothesized that androgen blockade will attenuate experimental aortic aneurysm formation.

METHODS: Aortas of 8- to 12-week-old male C57Bl/6 wild-type (WT) mice or male AR knockout (AR(-/-)) mice were perfused with purified porcine pancreatic elastase (0.35 U/mL) to induce AAA formation. Two groups of WT male mice were treated with the AR blockers flutamide (50 mg/kg) or ketoconazole (150 mg/kg) twice daily by intraperitoneal injection. Aortas were harvested on day 14 after video micrometry was used to measure AAA diameter. Cytokine arrays and histologic analysis were performed on aortic tissue. Groups were compared using an analysis of variance and a Tukey post hoc test.

RESULTS: Flutamide and ketoconazole treatment (mean ± standard error of the mean) attenuated AAA formation in WT mice (84.2% ± 22.8% [P = .009] and 91.5% ± 18.2% [P = .037]) compared with WT elastase (121% ± 5.23%). In addition, AR(-/-) mice showed attenuation of AAA growth (64.4% ± 22.7%; P < .0001) compared with WT elastase. Cytokine arrays of aortic tissue revealed decreased levels of proinflammatory cytokines interleukin (IL)-α, IL-6, and IL-17 in flutamide-treated and AR(-/-) groups compared with controls.

CONCLUSIONS: Pharmacologic and genetic AR blockade cause attenuation of AAA formation. Therapies for AR blockade used in prostate cancer may provide medical treatment to halt progression of AAAs in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app