JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

BMPR2 gene therapy for PAH acts via Smad and non-Smad signalling.

BACKGROUND AND OBJECTIVE: Pulmonary arterial hypertension (PAH) continues to be a fatal disease and is associated with downregulation of bone morphogenetic protein receptor type-2 (BMPR2). Our approach is to upregulate BMPR2 in the pulmonary vasculature allowing us to examine the changes in endothelial cell signalling and better understand what pathways are altered when disease is attenuated using this treatment approach.

METHODS: We used gene delivery of BMPR2 to human pulmonary endothelial cells to investigate downstream signalling, then assessed the impact of this approach on downstream signalling in vivo in rats with PAH using the monocrotaline (MCT) model.

RESULTS: Gene delivery of BMPR2 leads to an increase in BMPR2 protein expression, and this is associated with increased Smad1/5/8 and reduced Smad2/3 signalling. Additionally, we have found that BMPR2 modulation has effects on non-Smad signalling with increases found in phosphoinositide-3 kinase (PI3K) and a decrease in phosphorylated-p38-mitogen activated protein kinase (p38-MAPK) in vivo. These findings are associated with amelioration of PAH (reduced right ventricular, mean pulmonary artery pressures and Fulton Index).

CONCLUSION: These results indicate that the therapeutic effect of BMPR2 gene delivery on PAH is associated with a switch between TGF-β-Smad2/3 signalling to BMPR2-Smad1/5/8 signalling. This supports the further development of this treatment approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app