Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Characterizing longitudinal changes in rabbit brains infected with Angiostrongylus Cantonensis based on diffusion anisotropy.

Acta Tropica 2016 May
Angiostrongylus cantonensis has become a global source of infection in recent years, and the differential diagnosis and timely follow-up are crucial in the management of the infection. Magnetic resonance imaging (MRI) has been suggested as a non-invasive technique in characterizing and localizing lesions during the parasitic infections in the brain. Non-invasive diffusion tensor imaging (DTI) can be used to distinguish microscopic cerebral structures but cannot resolve the more complicated neural structure. Several methods have been proposed to overcome this limitation. One such method, generalized q-sampling imaging (GQI), can be applied to a variety of datasets, including the single shell, multi-shell or grid sampling schemes, which are believed to resolve complicated crossing fibers. This study aimed to characterize angiostrongyliasis in the rabbit brain over a 6-week period using anatomical and diffusion MRI, including DTI and GQI. Our anatomical T2WI and R2 mapping results showed that the ventricle size of the rabbit brain increased after A. cantonensis larvae infection, and the DTI and GQI indices both showed pathological changes in the corpus callosum, hippocampus and cortex over a 6-week infection period. These results were consistent with our histopathological findings. Our results demonstrated that the diagnosis of larvae infection using anatomical and diffusion MRI is possible and that follow-up characterization is informative in revealing the effects of angiostrongyliasis in various brain areas. These support the use of anatomical and diffusion MRI was helpful for diagnosis of eosinophilic meningitis caused by A. cantonensis infection. This non-invasive MRI platform could be used to improve the management of eosinophilic meningitis or eosinophilic meningoencephalitis in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app