JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

New frontiers in fibrotic disease therapies: The focus of the Joan and Joel Rosenbloom Center for Fibrotic Diseases at Thomas Jefferson University.

Fibrotic diseases constitute a world-wide major health problem, but research support remains inadequate in comparison to the need. Although considerable understanding of the pathogenesis of fibrotic reactions has been attained, no completely effective therapies exist. Although fibrotic disorders are diverse, it is universally appreciated that a particular cell type with unique characteristics, the myofibroblast, is responsible for replacement of functioning tissue with non-functional scar tissue. Understanding the cellular and molecular mechanisms responsible for the creation of myofibroblasts and their activities is central to the development of therapies. Critical signaling cascades, initiated primarily by TGF-β, but also involving other cytokines which stimulate pro-fibrotic reactions in the myofibroblast, offer potential therapeutic targets. However, because of the multiplicity and complex interactions of these signaling pathways, it is very unlikely that any single drug will be successful in modifying a major fibrotic disease. Therefore, we have chosen to examine the effectiveness of administration of several drug combinations in a mouse pneumoconiosis model. Such treatment proved to be effective. Because fibrotic diseases that tend to be chronic, are difficult to monitor, and are patient variable, implementation of clinical trials is difficult and expensive. Therefore, we have made efforts to identify and validate non-invasive biomarkers found in urine and blood. We describe the potential utility of five such markers: (i) the EDA form of fibronectin (Fn(EDA)), (ii) lysyl oxidase (LOX), (iii) lysyl oxidase-like protein 2 (LoxL2), (iv) connective tissue growth factor (CTGF, CCNII), and (v) the N-terminal propeptide of type III procollagen (PIIINP).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app